Addition and scalar multiplication are required to satisfy these eight rules,

1.
$$x+y=y+x$$
.

2.
$$x + (y+z) = (x+y) + z$$
.

- 3. There is a unique "zero vector" such that x + 0 = x for all x.
- 4. For each x there is a unique vector -x such that x + (-x) = 0.

5.
$$1x = x$$
.

6.
$$(c_1c_2)x = c_1(c_2x)$$
.

$$7. \quad c(x+y) = cx + cy.$$

8.
$$(c_1+c_2)x = c_1x+c_2x$$
.

Suppose V = R², does x-y plane satisfy eight rules?
i) x+y = y+x
k= (a₁, a₂)
y= (b₁, b₂)
(a₁+b₁, a₂+b₂) = (b₁+a₁, b₂+a₂)
since a₁+b₁=b₁+a₂
x+y=y+x
$$\checkmark$$

2) x+(y+z)= (x+y)+z
Z=(C₁, C₂)
(a₁, a₂) + (b₁+C₁, b₂+C₂) = (a₁+b₁, a₂+b₂+C₂)

3)
$$\times + \circ = \times$$

 $0 = (0, 0)$
4) $\times + (- \times) = 0$
 $- \times = (-\alpha_1, -\alpha_2)$
 $(\alpha_1 + (-\alpha_1), \alpha_2 + (-\alpha_2)) = (0, 0)$
6) $(c_1 c_2) \times = c_1 (c_2 \times)$
 $(c_1 c_2 (\alpha_1, \alpha_2) = C_1 (c_2 \alpha_1, c_2 \alpha_2))$
 $(c_1 c_2 \alpha_1, c_1 c_2 \alpha_2) = (c_1 c_2 \alpha_1, c_1 c_2 \alpha_2)$

Suppose
$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_2, x_2 + y_1)$$
. With the usual multiplication $cx = (cx_1, cx_2)$, which of the eight conditions are not satisfied?
 $(x + y) + z = x + (y + z)$
 $(x_1 + y_2, x_2 + y_1) + (z_1, z_2) = (x_1, y_2) + (y_1 + z_2, y_2 + z_1)$
 $(x_1 + y_2 + z_2, x_2 + y_1 + z_1) = (x_1 + y_2 + z_2, x_2 + y_1 + z_2)$
 $(x_1 + y_2 + z_2, x_2 + y_1 + z_1) = (x_1 + y_2 + z_2, x_2 + y_1 + z_2)$
 $(x_1 + y_2 + z_2, x_2 + y_1) = (cx_1 + y_2 + z_2, x_2 + y_1 + z_2)$
 $(x_1 + y_2, x_2 + y_1) = (cx_1 + cy_2, x_2 + y_1 + z_2)$
 $(x_1 + y_2, x_2 + y_1) = (cx_1 + cy_2, (x_2 + cy_1))$

$$(x_{1}, x_{2}) + (-x_{2}, -x_{1})$$

$$(x_{1}, x_{2}) + (-x_{2}, -x_{2}) = 0$$

$$(x_{1} - x_{3}, x_{2} - x_{2}) = 0$$

$$(x_{1} - x_{3}, x_{2} - x_{2}) = 0$$

$$(x_{1} + y_{2}, x_{2} + y_{1}) = (y_{1} + x_{2}, y_{1} + x_{1})$$

$$(x_{1} + y_{2}, x_{2} + y_{1}) = (y_{1} + x_{2}, y_{1} + x_{1})$$

$$(c_{1} + c_{2}) X = c_{1} X + c_{2} X$$

$$(c_{1} + c_{2}) X_{1}, (c_{1} + c_{3}) X_{2}) = (c_{1} X_{1,3} - c_{1} + x_{2}) + (c_{2} X_{1,3} - c_{2} + x_{2})$$

$$= (c_{1} X_{1} + c_{2} + x_{2}) + (c_{2} - x_{2})$$

Suppose the multiplication cx is defined to produce $(cx_1, 0)$ instead of (cx_1, cx_2) . With the usual addition in R², are the eight conditions satisfied?

$$(x = x)$$

$$(x_{1}, x_{2}) = (x_{1}, 0) \neq (x_{1}, x_{2})$$

$$(x_{1}, x_{2}) = (x_{1}, 0) \neq (x_{1}, x_{2})$$

$$C(x + y) = (x + cy)$$

$$((x_{1} + y_{1}, x_{2} + y_{2}) = (cx_{1}, 0) + (cy_{1}, 0)$$

$$(c(x_{1} + y_{1}), 0) = (cx_{1} + cy_{1}, 0)$$



